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We obtain over  a wide range of curva tu re  p a r a m e t e r s  the analyt ical  dependence of the heat  
t r a n s f e r  in a longitudinal flow past  cyl indr ical  bodies of sma l l  radius at constant  t e m p e r a -  
tu re .  

In industr ial  methods for  the manufacture  of ar t i f ic ia l ,  synthetic,  and natura l  f ibers ,  and also for  
other  m a t e r i a l s  of cyl indr ical  shape and smal l  radius,  cons iderable  impor tance  a t taches  to the p r o c e s s e s  
of heat  t r a n s f e r  and of h e a t - m a s s  t r ans f e r .  Studies have shown that the ef fec t iveness  of a significant p o r -  
tion of industr ial  operat ions  depends substant ia l ly  on the intensi ty of the p r o c e s s e s  involving the t r anspo r t  
of heat  and m a t t e r .  An analys is  of the intensi ty level of indust r ia l  heat  and m a s s  t r a n s f e r  p r o c e s s e s  in-  
volved in the product ion of ma te r i a l s  in the fo rm of cyl indr ica l  bodies of sma l l  radius  shows that the indus-  
t r i a l  heat and m a s s  t r a n s f e r  p r o c e s s e s  used are  of low intensi ty in compar i son  with what is theore t ica l ly  
poss ib le .  

In a s e r i e s  of exper imenta l  s tudies [1-3] it was shown that when the radius  of the cyl indr ical  bodies 
is d e c r e a s e d  (to tenths of a m i l l i m e t e r  and less)  a sha rp  growth in the heat  t r a n s f e r  coeff icients  is ob-  
s e rved .  

A s e r i e s  of analyt ical  s tudies is also avai lable  (see [4-6]) in which heat  t r a n s f e r  of cyl indr ical  bodies 
of smal l  radius  is analyzed on the bas i s  of the equations of the boundary l aye r  on a semiinf ini te  cy l Inder .  
Singular i t ies  of this p roblem,  assoc ia ted  with taking into account the t r a n s v e r s e  curva tu re  of the boundary 
layer ,  make  it imposs ib le  to obtain an exact  analyt ical  solution. The asymptot ic  solutions obtaIned in these  
p a p e r s  a re  valid only in regions  of large and sma l l  values  of a typical  cu rva tu re  p a r a m e t e r ,  while the 
approximate  solutions,  based  on applying a o n e - p a r a m e t e r  method for  calculat ing the hydrodynamic  and 
t he rma l  boundary l ayers ,  do not have ve ry  high a c c u r a c y .  

We give below an approximate  solution of the t he rma l  boundary l aye r  equation for  the longitudinal 
flow past  a cyl indr ica l  body of sma l l  radius .  Based on this solution, an expres s ion  is obtained for  the 
Nussel t  number ;  an analys is  of this express ion  makes  it poss ib le  to study the influence of the cyl indr ical  
shape of the boundary layer  on the heat  t r a n s f e r  intensity.  

We wri te  the s y s t e m  of equations descr ib ing  the s t a t ionary  flow of an incompress ib l e  liquid and the 
t r a n s p o r t  of t he rm a l  energy in the boundary l ayer  on a semiinf ini te  c i r cu l a r  cyl inder  in the f o r m  
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Fig. 1. Dependence of the Nussel t  
n u m b e r  Nu on the cu rva tu re  p a r a m -  
e te r :  Curve  1 r e p r e s e n t s  the plate 
solution; Curve 2 is the Seban, Bond, 
Kelly solution f rom [4]; Curve 3 is 
the Glauer t ,  LighthiIl, Bourne so lu-  
tion f r o m  [6]; Curve 4 is based on 
e x p r e s s i o n  (17); Curve 5 is based on 
exp re s s ion  (24). 

with the boundary conditions 

u = v = 0 ,  T = T ~  for r = r  o, 
(4) u - +  U . ,  T --+ T~ for t -+co.  

We employ  next the s e m i - i n t e g r a l  method developed in [7, 8]. 
In equation (3) we change over  to P r a n d t l - M i s e s  va r i ab les :  

OT _ ,, O (rou OT']. 
Ox Pr 0~ \ " -0-~] (5) 

Here  we have introduced the s t r e a m  function r sat isfying the 
re la t ions  

1 O~ 1 O~ 
u - , v . (6) 
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As the exp re s s ion  for  the longitudinal ve loci ty  component  u in 
Eq.  (5) we mus t  use, in accordance  with the scheme  of the 
s e m i - i n t e g r a l  method, a o n e - p a r a m e t e r  solution of Eqs .  (1) 
and (2), which has the f o r m  [5] 

u [~ (x)]-1 In 7. fo~" r ~ (~ -~- F o 

u .  (7) 
1 for r > 8 + r  o, 

Consider  Eq. (9) for  ( r - r 0 ) / r  0 << 1. 
nonvanishing t e r m s ,  we eas i ly  find that 

where  6 = r0(efl(X)-l)  is the th ickness  of the hydrodynamic  boundary l aye r ;  fl(x) is a f o r m  p a r a m e t e r ,  de-  
t e rmined  f r o m  the equation 

dp 
V~r~4V = ~-2 [(2~=__ 3~ + 2) e2~ - -  ~ - -  2] .... dx " (8) 

We now calcula te  the coeff icient  of OT/0r  on the r ight  side of Eq.  (5), taking Eq. (7) into account; we 
obtain the following express ion :  

r~'u --  f~ (x) In f - .  (9) 
r 0 

Substi tuting the value of u f r o m  E qs. (6) and integrat ing,  we obtain 

- 4p (x) L \ ro / ro 

To  p roceed  it is n e c e s s a r y  to solve Eq. (10) for  r / r  0 and to exp re s s  r2u as a function of r Since 
Eq.  (10) is t ranscendenta l ,  we solve it approx imate ly .  

Expanding the functions (9) and (10) and taking note of the f i r s t  

1 
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The expres s ion  (11) is found to be sufficiently accura te  only in regions  in which the p a r a m e t e r  ~ = 6 ( x ) / r  0 
is sma l l .  However ,  in a region f a r  f r o m  the beginning of the boundary l aye r  development ,  wherein  ~ > 1, 
the a c c u r a c y  of the expres s ion  (11) d e c r e a s e s  with an i nc rea se  in the d is tance  f r o m  the cyl inder  su r face .  

If we introduce the new d imens ion less  va r i ab l e s  
X 1 
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0 

we can reduce  Eq.  (5) with the boundary conditions (4) tO the f o r m  
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T = T w  for (p=O; T - > T ~  for ~-+~; T : T ~  for ~=0 .  
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Dependence of A on X = log 
[(vx/u~)r~l. 

We now apply a Laplace t rans format ion  with respec t  to 
to equation (13). Moreover  the equation for  the dimensionless  
t empera tu re  difference | = ( T - T ~ } / ( T w - T ~ )  is t r ans formed  
with the aid of the substitution ~01 = ~p3/4 into the following equa-  
tion of Besse l  type: 

d~OL, 1 1 dO L ( 3 ) ~  pr SOL _ O. 
d~ 2 -: 3 ~I d~l 

Its solution, with the boundary conditions (14) taken into 
account, has the fo rm 

1 3 

2 (S Pr) "g q0 T 
OL (s,  ~) = 

Taking the inverse  t ransform,  we obtain the solution of equations (13) and (14) in the fo rm 

where 

(15) 

3 
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The result ing Nusselt  number,  based on the relat ion (15), has the fo rm 

/,2__rl, x , 
1 4 1 - - T  (17) T 2zd. dr ],=o 3 ~" 27 (Pr) T [6 (X)] [6 (x)]- ~-dx 

We note that with the use of Eq.  (8) the integral  in this express ion  can be reduced to the fo rm 

�9 . dE N 6 T/I3 ,-g-;  26 -'- ~-6-~(e2,~-i-3)@--~-~-=Y(1--e2~). (18) 
0 0 

Consider  the express ion  (17) in the region ~t << 1. If in this region we use an asymptotic  express ion  
for  the fo rm p a r a m e t e r  (10), namely,  fi-t(X) -~ 0.278 X-l /2 ,  and substitute it into the express ion  (17), we 
obtain 

1 1 

Nu ~ 0.668 n (Pr) aX -~ (19) 

This  express ion  coincides with the f i r s t  t e r m  in the asymptot ic  expansion given in [4] in a region where the 
curva ture  p a r a m e t e r  is smal l .  

The graph of Nu ve r sus  X, calculated f rom the express ion  (17), is shown in Fig. 1. For  compar ison  
he re  we give the corresponding curves  obtained by asymptotic methods and also the cor responding  plate 
solution. As can be seen  f rom the figure,  in the region X < 0.1 the solution obtained he re  coincides with 
the asymptotic  solution given in [4]. For  large values of X the Nu values exceed those for  the plate;  how- 
eve r  in the region X > 10 2 the curve  does not go beyond the asymptotic  solution given by Lighthill, Bourne,  
and Davies [5, 6]. This is connected with the fact that for  large values of the curvature  p a r a m e t e r  the 
approximation (11) is less accura te .  

Since we are  in teres ted  in the cha rac te r i s t i c s  of the boundary layer  at the surface ,  we make our  r e -  
sults more  p rec i se  for  large values of the curvature  p a r a m e t e r  by using a weighted fo rm  of the r2u ve r sus  
r relat ionship given in Eq. (11), i .e. ,  we introduce a weight function A(X) at each boundary layer  section; 
thus 
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Fig. 3. Dependence of the re la t ive  th ickness  of the boundary l ayer  
on the cu rva tu re  p a r a m e t e r ,  X = (vx /U~)r  2. 

Fig.  4. Dependence of the ra t io  of the t e m p e r a t u r e  gradients  on 
cyl indr ica l  and flat  s u r f ace s  on the cyl inder  d i a m e t e r  and the bound- 
a r y  l aye r  th ickness ,  5, ram.  

01~_ , 2 - ,  I 1 I 
L r n U ~  I 2 , :;-  (20) 

Replacing r2u and r in this equation by the i r  values  f r o m  equations (9) and (10), we find that this approx i -  
mat ion  c o r r e s p o n d s  to the following approximat ion  of the function appear ing  in E q, (9): 

. I r ) ; r ~-lnr----A(X)[\-~o 2 1 n - - - - 1  @l  - for r - - r 0 < 8 ( X  ). (21) 
To ~ r o  

In accordance  with the s e m i - i n t e g r a l  method the values  of A(X) mus t  be de te rmined  f r o m  some  in-  
t eg ra l  condition. In this case  it is convenient to use the condition for  the equali ty of the approx imate  and 
the exact  values  of the total  heat  flow 

5 ( X )  

i 
' OT 

Q = 4.n~9 r"-u dr, 
Or 

ro 

t r a n s p o r t e d  by the liquid into each boundary l aye r  sect ion.  Equating the values  of Q calcula ted f rom the 
approx imate  and f r o m  the exact  va lues  of r2u in accordance  with the re la t ion  (21), and taking, in a f i r s t  
approximat ion ,  the t e m p e r a t u r e  in the boundary l ayer  d is t r ibuted  according  to the logar i thmic  law (7), we 
obtain the following express ion :  

5 ( X ) , ' r ~  

i' t In tdt 
i (22) A (X) = ,~(:,.. ,~ 

i' t-: [ t ~ ( 2 1 n t -  :) + :]~d,t 
i 

This  exp res s ion  is sui table  for  P r  -> 1 when the t he rma l  boundary l ayer  is not th icker  than the dynamic 
boundary layer .  When P r  < 1, the l imi t s  of in tegra t ion in Eq. (22) mus t  be changed to take into account 
the re la t ionship  between the th icknesses  of these boundary l aye r s .  The dependence of A on X, calculated 
f r o m  this equation, is shown in Fig. 2. 

If we now subst i tute  the exp re s s ion  (20) into Eq. (5) and introduce,  in place of the f i r s t  of Eqs .  (12), 
the following t r a n s f o r m a t i o n  for  4, 

X l 

= ~ ~.i >: (x) [~ (.,-)]-:~.,-, (23) 
0 
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we again arr ive at the problem defined by Eqs, (13) and (14), and to a solution of it in the form (15). How- 
ever, taking into account the new ~ versus X relationship (23), we find that the expression for the Nnsselt 
number now becomes 

1 4 1 1 X . l 

/ 1 )  �9 r ; 

The results calculated through the use of this function Nu(X), shown in Fig. 1, agree satisfactorily 
with the exact asymptotic solutions in corresponding limiting regions for the values of the curvature param- 
eter .  

It follows from this figure that for identical values of the curvature parameter  (rx/Uo~r~theheat t r a n s -  
fer  coefficient for a cylindrical body is always greater  than for a flat plate. The increase in the heat t rans-  
fer  is reinforced with a decrease in the diameter of the cylindrical body, which, in contrast to the other 
quantities, enters the parameter  as a squared quantity. In particular, for a change in diameter of the cylin- 
drical  body from 0.1 mm to 0.01 mm, i.e., a 10-fold decrease, the best t ransfer  coefficient is reinforced by 
a factor of 5.7, which agrees with the experimental data given in [1-3], whereas the boundary layer  thick- 
ness is decreased by only 15% (Fig. 3). This means that the growth in the heat t ransfer  intensity is, in the 
main, due to singularities arising from the cylindrical shape of the boundary layer.  The cylindrical shape 
of the boundary layer causes an increase in the surface of the following layers of the boundary layer.  More- 
over, the heat flow arriving per unit surface is diminished. This results in a much steeper change in the 
temperature gradient in the boundary layer on the cylinder in comparison with that on a flat plate. There-  
fore,  as is evident on Fig. 4, with a decrease in the cylinder radius, other conditions being equal, the 
temperature gradient on the surface increases.  It is natural that the influence found to exist on the heat 
transfer,  although not quite substantial, does, in fact, show a decrease in the boundary layer thickness.  

It follows from these results that in the manufacture of cylindrically shaped materials of small radius 
an intensification of heat t ransfer  can be achieved, in the main, not by increasing the flow speed past these 
cylinders, but by organizing the heat t ransfer  conditions so that the materials would present  the smallest 
possible diameters.  
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are the space coordinates; 
are the longitudinal and t ransverse  flow velocity components; 
is the tempe rature;  
is the cylinder radius; 
is the surface temperature;  
are the velocity and temperature of undisturbed flow; 
is the kinematic viscosity; 
is the Prandtl number; 
is the s t ream function; 
is the boundary layer thickness; 
is the form parameter;  
is the curvature parameter ;  
are the dimensionless variables; 
xs the dimensionless temperature;  
is the parameter  of Laplace transformation; 
is the gamma-function; 
m the similari ty variable; 
is the thermal conductivity; 
~s the Nusselt number; 
is the degenerated hypergeometric function; 
m the heat flux. 
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